Cloud Client Software Development Kit User
Guide V1.0.0

Preface

The Cloud Client Software Development Kit (abbreviated as ZWP2P Client) is based on Peer-to-Peer
(P2P) communication technology and is used to access and control any device that supports cloud
protocols. Typical applications include:

Accessing and controlling cameras (IPC),

Digital Video Recorders (DVR),

Network Video Recorders (NVR),

Hybrid Video Recorders (HVR), and other video surveillance devices.

This guide aims to help users quickly utilize the SDK to access and control devices. It describes the
background knowledge, principles, potential difficulties, and important considerations you need to know
while using the SDK. It is essential reading for developers.

We have tried to minimize the documentation, aiming to ensure that developers only need to refer to the
comments in the header files to assist with their development work. However, for more complex topics,
additional explanations are provided in this document.

Target Audience

e Software developers

e Software testers

Reader Requirements
Since this development guide and examples are provided in C language, familiarity with basic C
language knowledge is required.

Tips

Readers can display the "Document Structure" to see the file structure on the left side of the software,
which presents the main contents clearly and intuitively, making it easier to find the target content
quickly.

Platform Support

Platform Description

Win32 Windows X86 32-bit platform

Platform Description

Win64 Windows X86 64-bit platform (not supported)
Linux 32bit Linux X86 32-bit platform
Linux 64bit Linux X86 64-bit platform

arm-hisiv100nptl-linux Hisilicon V100 Toolchain
arm-hisiv300-linux Hisilicon V300 Toolchain

arm-hisiv500-linux Hisilicon V500 Toolchain

Version History

Modification Date Version Changes

2017/08/26 1.0.0 First creation

Main Features Overview
The SDK currently supports the following features:

—

. Login, Logout

. Real-Time Stream Data Transmission and Control

. Historical Stream Data Query, Transmission, and Control
. Two-Way Audio (not supported yet)

. PTZ Control

. Remote Desktop

. Configuration Get and Set

. HTTP API Command Forwarding

. Runtime Parameter Adjustment

o ©O© 0o N o o A W DN

—

. Others

API Documentation

Initialization, De-initialization, and Runtime Parameters API

Runtime Parameters

¢ Interface Name:

int CALLSTACK ZWP2PVNClient SetAttribute (IN eZWP2P SDK ATTRIBUTE TYPE eType, IN
ZWP2P UINT32 dwAttribute) ;

e Description:
You can adjust runtime parameters based on your application scenario for a better user experience.

e Parameters:

o leType - The attribute type, such as eZWP2P_ATTRIBUTE USER CUSTOM STREAM HEADER LEN (for
custom media data formats), | eZWP2P_ATTRIBUTE DEVICE STATUS NOTIFY TIME (device status
update interval, default 10 seconds), etc.

o |dwAttribute - The value for the selected attribute.
¢ Return Values:

o | eZWP2P_ERR _FATLED INVALID PARAMETER - Invalid parameters.

o |eZWP2P ERR SUCCESS| - Success.

Initialization

¢ Interface Name:
int CALLSTACK ZWP2PVNClient Start (LPINIT NETWORK PARAM cInitNetworkPara) ;

e Description:

Initializes the network parameters.

e Parameters:

o [cInitNetworkPara - Network initialization parameters. For example, sRemoteServerAddress for
the P2P server address. If the user has their own P2P server, enter the server address.
Otherwise, leave it empty.

¢ Return Values:

o |eZWP2P_ERR FAILED - Failure. Check the debug message for more information.

o eZWP2P_ERR_SUCCESS - Success.

De-initialization

¢ Interface Name:
int CALLSTACK ZWP2PVNClient Stop():

e Description:
Stops the service and de-initializes.
¢ Return Values:
o | eZWP2P_ERR_FAILED - Failure. Check the debug message.

o |eZWP2P ERR SUCCESS - Success.

Login, Logout, Device Status API

Login

¢ Interface Name:

int CALLSTACK ZWP2PVNClient UserLogin(OUT ZWP2P_HUSER *hUser, IN const
LPZWP2P_USER_LOGIN_PARAM cUserLoginPara) ;

¢ Description:
Logs in to the device.

e Parameters:

o hUser - Output parameter. After successful login, a handle is returned for subsequent device
operations.

o |cUserLoginPara - User login parameters such as sDeviceUID (device P2P ID), sUName
(username), sUPass (password), and pServerString (P2P server address).

e Return Values:

o eZWP2P_ERR_FAILED - Failure.

o eZWP2P ERR SUCCESS - Success.

Logout

¢ Interface Name:
int CALLSTACK ZWP2PVNClient UserLogout (IN ZWP2P HUSER hUser) ;

e Description:
Logs out from the device. This reduces resource usage.

e Parameters:
o hUser| - User handle.
e Return Values:

o eZWP2P_ERR_FAILED - Failure.

o eZWP2P ERR SUCCESS - Success.

Device Status

¢ Device Status Callback Function Definition

typedef int (CALLBACK *ZWP2P CB DEVICE STATUS) (IN ZWP2P HUSER hUser, IN ZWP2P UINT32
dwDeviceStatus, IN ZWP2P UINT32 dwUserData) ;

e Description:
Callback function for device status updates.

e Parameters:

o hUser - User handle.
o dwDeviceStatus - Device status (0: Offline, 1: Online).
o dwUserData - User data.

e Return Values:
o None.
Setting Device Status Callback Function
Interface Name

int CALLSTACK ZWP2PVNClient SetDeviceStatusCB(IN ZWP2P_HUSER hUser, IN
ZWP2P_CB_DEVICE_STATUS cbDeviceStatus, IN ZWP2P_UINT32 dwUserData) ;

Description
Set the device status callback function.

Parameter List

e hUser - User handle
e chDeviceStatus - Status callback function, see the callback function definition for details.

e dwUserData - User data

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATLED SDK NOT INIT - Not initialized.

eZWP2P_ERR_SUCCESS - Success.

eZWP2P_ERR_FAILED INVALID HANDLE - Invalid handle, indicating an illegal handle value was used.

Check if the Device is Online

Interface Name

int CALLSTACK ZWP2PVNClient IsDeviceOnline(IN ZWP2P_CHAR * pStrUID) ;

Description
Check whether the device is online.

Real-Time Stream Data Transmission Interface

The main work of the library in terms of real-time streaming is to efficiently and quickly retrieve the
device's real-time media data and forward it to the application layer. The application layer will receive
basic information about the media data frames. The media data is in raw standard format, and the
application layer should cache, decode, play, store, or process the data after receiving it.

Note: Only one stream can be transmitted at a time on a single channel for a client. Multiple streams,
such as main stream, sub-stream, or others, cannot be transmitted simultaneously. This limitation is
mainly due to bandwidth considerations in internet transmission.

Connection

Interface Name

int CALLSTACK ZWP2PVNClient RealStreamConnect (OUT ZWP2P_HSTREAM *hStream, IN
ZWP2P_HUSER hUser, IN const LPZWP2P_REALSTREAM_PARA cStreamPara) ;

Description

Connect to the real-time stream.

Once connected, you need to call the function to set the real-time stream callback function. After the
stream starts, media data will be sent to the application layer.

Note: The media data’s resolution, bitrate, and frame rate may not fully match the video quality level. If
required, call the function to adjust the encoding parameters for video quality.

Parameter List

e hUser - User handle (input)

e hStream - Real-time stream handle (output), will be filled by the library upon successful connection.

Note: The handle starts from 0, and the application layer must avoid treating 0 as an invalid or initial

value.

e cStreamPara

o | dwChannel - Channel number, starting from O.

o leMediaQuality - Video quality level, defined in [eZWP2P_QUALITY_ LEVEL enum.

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATLED SDK NOT INIT - Not initialized.

eZWP2P_ERR_SUCCESS - Success.

eZWP2P_ERR_FATLED INVALID HANDLE - Invalid handle, indicating an illegal handle value.
Real-Time Stream Callback Function Definition

Interface Name

typedef int (CALLBACK *ZWP2P_CB_STREAMMEDIA) (IN ZWP2P_HSTREAM hStream,
ZWP2P_STREAMMEDTA_FRAME_HEADER * pStreamMedia, IN ZWP2P_UINT32 dwUserData) ;

Description
Real-time stream media data callback function definition.

Parameter List

e hStream - Real-time stream handle (input)

e pStreamMedia - Media data structure pointer (input), including basic media frame information and
raw standard media data.
Once the device sends media data, it will be passed back to the application layer through this
function. The application layer should cache the data and immediately return, performing tasks like
decoding, playback, storage, or processing in another thread.
Do not perform time-consuming operations inside the callback function, as this may disrupt data
transmission, leading to issues like frame loss, stuttering, or glitches.

e dwUserData - User data, passed back to the application layer when the callback is invoked.

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATLED SDK NOT INIT - Not initialized.

eZWP2P_ERR_SUCCESS - Success.

eZWP2P ERR_FAILED INVALID HANDLE - Invalid handle, indicating an illegal handle value.
Set Real-Time Stream Media Data Callback Function

Interface Name

int CALLSTACK ZWP2PVNClient StreamMediaCB(IN ZWP2P_HSTREAM hStream, IN
ZWP2P_CB_STREAMMEDIA cbStreamMedia, IN ZWP2P_UINT32 dwUserData) ;

Description
Set the real-time stream media data callback function.

Parameter List

e hStream - Real-time stream handle (input)
e cbStreamMedia - Media data callback function (input), see its function definition for details.

e dwUserData - User data for callback (input).

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATILED SDK NOT INIT - Not initialized.

eZWP2P ERR SUCCESS - Success.

eZWP2P_ERR_FATLED TINVALID HANDLE - Invalid handle, indicating an illegal handle value.

Real-Time Stream Control

Interface Name

int CALLSTACK ZWP2PVNClient StreamMediaControl (IN ZWP2P HSTREAM hStream, IN
eZWP2P CMD OPERATE eMediaControl) ;

Description
Start or stop real-time stream transmission.

Parameter List

e hStream - Real-time stream handle (input)

e eMediaControl - Start or stop.

Return Values

e eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.
e eZWP2P_ERR_FAILED SDK _NOT INIT - Not initialized.
e eZWP2P ERR SUCCESS - Success.

e eZWP2P_ERR FAILED INVALID HANDLE - Invalid handle, indicating an illegal handle value.
Disconnect the Real-Time Stream

Interface Name

int CALLSTACK ZWP2PVNClient RealStreamDisconnect (IN ZWP2P HSTREAM hStream) ;

Description
Disconnect from the real-time stream.
This will automatically stop real-time stream transmission.

Parameter List

e hStream - Real-time stream handle.

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATLED SDK NOT INIT - Not initialized.

eZWP2P_ERR_SUCCESS | - Success.

eZWP2P_ERR_FAILED INVALID HANDLE - Invalid handle, indicating an illegal handle value.
Open and Close Audio

Interface Name

int CALLSTACK ZWP2PVNClient OpenAudio (IN ZWP2P HSTREAM hStream) ;
int CALLSTACK ZWP2PVNClient CloseAudio (IN ZWP2P HSTREAM hStream) ;

Description
Open and close audio.
By default, audio is not transmitted to save bandwidth. It can be enabled if necessary.

Parameter List

e hStream - Stream handle.

Return Values

eZWP2P_ERR_FAILED - Failed. Check corresponding debug messages for the specific cause.

eZWP2P_ERR_FATLED SDK NOT INIT - Not initialized.

eZWP2P_ERR_SUCCESS - Success.

eZWP2P_ERR_FAILED INVALID HANDLE - Invalid handle, indicating an illegal handle value.
History Stream Data Transmission Interface

Get the Video Distribution Overview for a Specific Month
Interface Name

int CALLSTACK ZWP2PVNClient DataExistCHeck (IN ZWP2P HUSER hUser, IN ZWP2P UINT32
dwChannel, IN ZWP2P CHAR #*szYearMonth, OUT ZWP2P CHAR *cResult) :

Description
Get the video distribution overview for a specific month.

Parameter List

hUser | - User handle.

dwChannel - Ignored, as the device currently does not support querying video distribution by
channel.

e szYearMonth - Year and month string, e.g., “201708” for August 2017.

cResult - Video distribution description string, with a length of 32 characters.

Each character represents a day of the month. “1” means there is video, and “0” means there is no
video. For example, "10101000000000000000000000000000" means video exists on the 1st, 3rd,
and 5th of the month.

Return Values

e eZWP2P_ERR FAILED - Failed. Check corresponding debug messages for the specific cause.
e eZWP2P_ERR FAILED SDK NOT INIT - Not initialized.

e eZWP2P_ERR_SUCCESS - Success.
Stop History Stream

Interface Name

int CALLSTACK ZWP2PVNClient StopHistoryStream(IN ZWP2P HUSER hUser) ;

Description
Stop history stream.
The stream handle will be invalidated after calling this function.

Return Values

e eZWP2P_ERR FATLED - Failed. Check corresponding debug messages for the specific cause.
e eZWP2P_ERR FAILED SDK NOT INIT - Not initialized.

e eZWP2P_ERR SUCCESS - Success.
History Stream Control

Interface Name

int CALLSTACK ZWP2PVNClient HistoryStreamControl (IN ZWP2P HSTREAM hHistory, IN
eZWP2P CMD HISTORYSTREAM OPERATE eHistoryStreamOperate) ;

Description
Start or stop history stream transmission.

Parameter List

e hHistory : Input parameter, history stream transmission handle.

e eHistoryStreamOperate : Operation type, either start or stop.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.

eZWP2P_ERR_FAILED SDK NOT INIT : Not initialized.

eZWP2P_ERR_SUCCESS : Success.

eZWP2P_ERR_FATLED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Speed Transmission

Interface Name

int CALLSTACK ZWP2PVNClient HistoryStreamSetSpeed (IN ZWP2P HSTREAM hHistory, IN
ZWP2P UINT32 dwSpeed) ;

Description

Set the speed for history stream data transmission.

Note: Due to differences in device performance, the device may only send key frames at higher speeds.
For example, most devices only send key frames at speeds above 4x.

Parameter List

e hHistory : Input parameter, history stream handle (will be filled after a successful connection).

e dwSpeed : Speed setting, options are 1, 2, 4, 8, and 16.

Return Values

e eZWP2P_ERR FATLED : Failure, refer to corresponding debug messages for details.
e eZWP2P_ERR FAILED SDK NOT INIT : Not initialized.
e eZWP2P_ERR SUCCESS : Success.

e eZWP2P_ERR_FATLED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Positioning

Interface Name

int CALLSTACK ZWP2PVNClient HistoryStreamPosition(IN ZWP2P HSTREAM hHistory, IN
ZWP2P DATETIME *cTime) ;

Description

Position the history stream to a specific time.

Note: It is important to remember the current value of cPositionID in the history stream header before
calling this interface (denoted as A). After positioning, if the value of [cPositionID in the media data
returned to the application (denoted as B) is the same as A, the frame should be discarded. If B is
different, it means the data after positioning has arrived, and the frame should be processed.

Parameter List

e hHistory : Input parameter, history stream transmission handle.

e cTime : Position time point.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.

eZWP2P_ERR_FATLED SDK NOT INIT : Not initialized.

eZWP2P ERR SUCCESS : Success.

eZWP2P_ERR_FATLED TINVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Pause/Resume Playback

The functionality is the same as the history stream control interface described above.

Destroy History Stream

Interface Name

int CALLSTACK ZWP2PVNClient HistoryStreamDestroy (IN ZWP2P HSTREAM hHistory) ;

Description

Destroy history stream transmission resources.

It is crucial to destroy the resources when no longer needed to prevent memory leaks.

Parameter List

hHistory : Input parameter, history stream transmission handle.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.
eZWP2P_ERR_FAILED SDK NOT INIT : Not initialized.
eZWP2P_ERR_SUCCESS : Success.

eZWP2P_ERR_FAILED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

PTZ Control Interface

Interface Name

int CALLSTACK ZWP2PVNClient PTZControl (IN ZWP2P_HUSER hUser, IN ZWP2P_UINT32
uiChannel, IN eZWP2P_PTZ_ CONTROL_CODE eCommandCode, IN ZWP2P UINT32 uiParaml, IN
ZWP2P_UINT32 uiParam2, IN ZWP2P_UINT32 uiParam3, ZWP2P_UINT32 uiParam4) ;

Description

Control PTZ operations, including direction control, preset points, trajectories, and cruise settings.

Parameter List

hUser : Input parameter, user handle.
uiChannel : Channel number.
eCommandCode : PTZ operation command code, refer to the definition of | eZWP2P_PTZ_CONTROL_CODE .

uiParaml , uiParam2, uiParam3|, uiParam4: Parameters specific to the PTZ command, refer to the
documentation for details.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.
eZWP2P_ERR FAILED SDK NOT INIT : Not initialized.
eZWP2P ERR SUCCESS : Success.

eZWP2P_ERR_FATLED_ INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Command Processing Callback

Interface Name

typedef int (CALLBACK *ZWP2P_CB_USER_CMD_REPLY) (IN ZWP2P_HUSER hUser,
ZWP2P_USER_CMD_REPLY * pstruReply, IN ZWP2P_UINT32 dwUserData) ;

Description
Command processing callback.

Parameter List

hUser : Input parameter, user handle.

pstruReply : Device response content.

dwCnd : Command word, refer to the |ZWP2P CMD CODE @ definition for details.

dwResult ; Result value, refer to eZWP2P ERR CODE for details.

e cResponse : Response content, the application layer should copy the corresponding structure data to
its structure or use the structure pointer to access it.

e dwUserData : User data.

Return Values
e int: Ignored.

Set Command Processing Callback

Interface Name

int CALLSTACK ZWP2PVNClient SetCmdReplyCB(IN ZWP2P_HUSER hUser,
ZWP2P_CB_USER_CMD_REPLY cbUserCmdReply, ZWP2P_UINT32 dwUserData) ;

Description
Set command processing callback function.

Parameter List

e hUser : Input parameter, user handle.
e cbUserCmdReply : Command processing callback function.

e dwUserData : User data, which will be passed back to the application layer when the callback is
triggered.

Return Values

e eZWP2P_ERR FATLED : Failure, refer to corresponding debug messages for details.
e eZWP2P_ERR_FAILED SDK NOT INIT : Not initialized.
e eZWP2P_ERR _SUCCESS : Success.

e eZWP2P_ERR_FAILED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Device Information
Interface Name
int CALLSTACK ZWP2PVNClient GetDevicelInfo(IN ZWP2P HUSER hUser) ;int CALLSTACK

ZWP2PVNClient GetDeviceInfoBlock (IN ZWP2P_HUSER hUser, OUT ZWP2P_DEVICE_INFO *

pDevicelInfo) ;

Description

e ZWP2PVNClient GetDevicelnfo : Asynchronously fetch device information.

e ZWP2PVNClient GetDevicelnfoBlock : Synchronously fetch device information.

Parameter List

e hUser : Input parameter, user handle.

e pDevicelnfo : Output parameter, includes device model, name, serial number, etc.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.

eZWP2P_ERR_FATLED SDK NOT INIT : Not initialized.

eZWP2P_ERR_SUCCESS : Success.

eZWP2P_ERR_FAILED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Device Capabilities
Interface Name

int CALLSTACK ZWP2PVNClient GetDeviceCapBlock (IN ZWP2P HUSER hUser, ZWP2P DEVICE CAP *
pDeviceCap) ;

Description

Get the capabilities of the device.

Note: The client should present certain features based on the device's capabilities. For instance, if the
device does not support PTZ, the PTZ control interface should not be shown.

Parameter List

e hUser : Input parameter, user handle.

e pDeviceCap : Output parameter, includes device capabilities such as PTZ support, SD card support,
and video channel count.

Return Values

e eZWP2P_ERR_FATLED : Failure, refer to corresponding debug messages for details.

e ¢ZWP2P ERR FAILED SDK NOT INIT : Not initialized.
e eZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR FAILED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.

Video Quality Level
Interface Name

int CALLSTACK ZWP2PVNClient GetDeviceVideoQulityBlock (IN ZWP2P_HUSER hUser, OUT
ZWP2P_VIDEO QUALITY_LEVEL * pVideoQulity) ;

Description
Get the video quality level.
Note: The application should present video quality options according to the returned video quality levels.

Parameter List

e hUser : Input parameter, user handle.

e pVideoQulity : Output parameter, includes the video quality level.

Return Values

eZWP2P_ERR_FAILED : Failure, refer to corresponding debug messages for details.

eZWP2P_ERR_FATLED SDK NOT INIT : Not initialized.

eZWP2P_ERR SUCCESS : Success.

eZWP2P_ERR_FAILED INVALID HANDLE : Invalid handle, this means an illegal handle value was used.
System Time

Interface Name

int CALLSTACK ZWP2PVNClient GetDeviceSystemTimeBlock (IN ZWP2P HUSER hUser, OUT
ZWP2P DEVICE SYSTEM TIME * pDeviceSystemTime) ;int CALLSTACK

ZWP2PVNClient SetDeviceSystemTimeBlock (IN ZWP2P HUSER hUser, OUT
ZWP2P DEVICE SYSTEM TIME * pDeviceSystemTime) ;

Description
Get and set the device system time.
Parameter List

e hUser : Input parameter, user handle.

e pDeviceSystemTime : System time.

Return Values

e eZWP2P_ERR FATLED : Failure. Check the corresponding debug messages for more details.

e ¢ZWP2P ERR FAILED SDK NOT INIT : Not initialized.
e eZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR _FAILED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

Real-Time Stream Audio Enable

Interface Name

int CALLSTACK ZWP2PVNClient AudioEnableBlock (IN ZWP2P_HUSER hUser, IN ZWP2P UINT32
uiChannel, IN ZWP2P UINT32 uiEnable) ;

Description
Enable or disable the transmission of real-time stream audio data.
This function is the same as the audio control interface in real-time streams, which is omitted here.

Parameter List

e hUser : Input parameter, user handle.
e uiChannel : Channel number.

e uyiEnable:

o 0 : Stop real-time stream audio data transmission.

o |1: Enable real-time stream audio data transmission.

Return Values

e eZWP2P_ERR_FATLED : Failure. Check the corresponding debug messages for more details.
e eZWP2P_ERR_FAILED SDK _NOT INIT : Not initialized.
e eZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR FAILED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

Encoding Parameters

Interface Name

int CALLSTACK ZWP2PVNClient GetCodecBlock (IN ZWP2P HUSER hUser, ZWP2P UINT32
uiChannel, ZWP2P UINT32 uiStreamType, ZWP2P CODEC CFG * pCodecCfg);int CALLSTACK
ZWP2PVNClient SetCodecBlock (IN ZWP2P HUSER hUser, ZWP2P UINT32 uiChannel, ZWP2P UINT32
uiStreamType, ZWP2P CODEC CFG * pCodecCfg) ;

Description

Get and set encoding parameters.

Unlike getting and setting video quality levels, this interface provides more detailed settings for
encoding parameters, such as resolution, frame rate, and bitrate. It is mainly used for setting encoding

parameters for the primary stream.
Once the video quality level is set, the corresponding stream will have its encoding parameters fixed.

Parameter List

e hUser : Input parameter, user handle.
e uiChannel : Channel number.

e uiStreamType : Stream type (also referred to as stream ID):

o [0: Primary stream.
o [1: Sub-stream.
o 2 High-definition sub-stream (mobile stream).

e pCodecCfg : Includes encoding type, resolution, frame rate, bitrate, and other encoding parameters.

Return Values

e eZWP2P_ERR_FAILED : Failure. Check the corresponding debug messages for more details.
e |eZWP2P_ERR FATLED SDK NOT INIT : Not initialized.
e eZWP2P_ERR_SUCCESS : Success.

e e¢ZWP2P_ERR _FAILED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

Device Network Configuration

Interface Name

int CALLSTACK ZWP2PVNClient GetNetcardListBlock (IN ZWP2P HUSER hUser,
ZWP2P NETCARD LIST * pNetcardList);int CALLSTACK ZWP2PVNClient SetNetcardListBlock (IN
ZWP2P HUSER hUser, ZWP2P NETCARD LIST * pNetcardList);

Description
Get and set network configuration.
Parameter List

e hUser : Input parameter, user handle.

e pNetcardList : The network configuration of all network cards supported by the current device,
including basic network parameters like DHCP, DNS, MAC address, etc. (MAC address cannot be
configured).

Return Values

e eZWP2P_ERR_FATLED : Failure. Check the corresponding debug messages for more details.
e eZWP2P_ERR_FAILED SDK NOT INIT : Not initialized.
e eZWP2P_ERR SUCCESS : Success.

e eZWP2P_ERR_FATLED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

OSD Configuration
Interface Name
int CALLSTACK ZWP2PVNClient GetOSDBlock (IN ZWP2P HUSER hUser, ZWP2P UINT32 uiChannel,

ZWP2P_0SD_CFG * pOSDCfg) ;int CALLSTACK ZWP2PVNClient SetOSDBlock (IN ZWP2P_HUSER hUser,
ZWP2P_UINT32 uiChannel, ZWP2P_0SD_CFG * pOSDCfg) ;

Description
Get and set OSD configuration (channel name, time OSD).
Note: Channel names do not support Chinese characters.

Parameter List

e hUser : Input parameter, user handle.

e p0SDCfg: OSD configuration, including:

o Position of the channel name and whether it is displayed.

o Position and display format of the time OSD.

Return Values

e eZWP2P_ERR_FAILED : Failure. Check the corresponding debug messages for more details.
e eZWP2P ERR FAILED SDK NOT INIT : Not initialized.
e cZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR_FATLED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

SD Card

Interface Name

int CALLSTACK ZWP2PVNClient GetSDCardBlock (IN ZWP2P_HUSER hUser, ZWP2P_SDCARD INFO*
pSDCardInfo) ;int CALLSTACK ZWP2PVNClient FormatSDCardBlock (IN ZWP2P HUSER hUser) ;

Description
Get basic SD card information and format the SD card.

Parameter List

e hUser : Input parameter, user handle.

e pSDCardInfo : Includes SD card brand, capacity, status, and other basic SD card information.

Return Values

e eZWP2P_ERR_FAILED : Failure. Check the corresponding debug messages for more details.

e eZWP2P_ERR FATLED SDK_NOT INIT : Not initialized.

e eZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR _FAILED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

Restore Factory Configuration

Interface Name

int CALLSTACK ZWP2PVNClient RestoreFactoryBlock (IN ZWP2P HUSER hUser) ;

Description
Restore factory configuration.

Reboot

Interface Name

int CALLSTACK ZWP2PVNClient RemoteRebootBlock (IN ZWP2P HUSER hUser) ;

Description
Reboot the device.

Modify User Password

Interface Name

int CALLSTACK ZWP2PVNClient ModifyPasswordBlock (IN ZWP2P HUSER hUser,
ZWP2P DEVICE MODIFY USER PASSWORD * pModifyUserPassword) ;

Description
Modify the user password.

HTTP APl Request Forwarding

Interface Name

int CALLSTACK ZWP2PVNClient TransferCGICommand (IN ZWP2P HUSER hUser, char
pHttpRequest, int dwRequestLen, char** ppResponse, int* pResponselLen);int CALLSTACK
ZWP2PVNClient ReleaseTransferCGIBuf (char* pHttpResponse) ;

Description

For devices that support HTTP API access, this interface sends an HTTP API request, and the device
will reply with a standard HTTP response. After obtaining the response, the client needs to parse the
reply content, which is usually in HTTP+XML format.

This interface is generally used when the SDK does not support certain configurations, but the client
wishes to quickly support it.

Parameter List

e hUser : Input parameter, user handle.

e pHttpRequest : Complete HTTP request string.

e dwRequestLen : Length of the HTTP request string.

e ppResponse : HTTP response content.

e pResponseLen : Length of the HTTP response content.

Return Values

e eZWP2P_ERR_FATLED : Failure. Check the corresponding debug messages for more details.

e eZWP2P_ERR FATLED SDK_NOT INIT : Not initialized.

e eZWP2P ERR SUCCESS : Success.

e eZWP2P_ERR _FAILED INVALID HANDLE : Invalid handle. This means an illegal handle value was used.

Data Structure Detailed Explanation
Video Quality Level

Definition

typedef enum

{
eZWP2P_QUALITY_UNKNOWN = 0x00,

current encoding parameters
eZWP2P_QUALITY MAX = 0x01,
eZWP2P_QUALITY HIGH = 0x02,
eZWP2P_QUALITY MIDDLE = 0x03,
eZWP2P_QUALITY _LOW = 0x04,
eZWP2P_QUALITY _MIN = 0x05,
eZWP2P_QUALITY_ SUPER = 0x06,
eZWP2P_QUALITY DECIDE _BY DEVICE =

} ZWP2P_QUALITY LEVEL;

Description
This enum defines the video quality levels.

Use the current actual quality, do not

Waximum quality
High quality
Wedium quality
Low quality
Winimum quality
Super quality

0x20, Device decides adaptively

change

e eZWP2P_QUALITY SUPER : Typically, the SUPER quality level corresponds to the main stream.
Important: It is not recommended to use eZWP2P_QUALITY UNKNOWN and
eZWP2P_QUALITY DECIDE BY DEVICE as these will be gradually deprecated.

Real-Time Stream Media Frame Header Structure

Definition

typedef struct tagZWP2P_STREAMMEDIA FRAME HEADER

{

ZWP2P UINT32 uiFrameType; ///< Frame type, refer to the definition of
IWP2P FRAMETYPE
ZWP2P UINT32 uiFrameNo; // 1< Frame number
ZWP2P UINT32 uiChannel; // 1< Channel number, starts from 0
ZWP2P CHAR cStreamlD; /1< Stream ID. 0 for main stream, [for sub-stream
ZWP2P CHAR cCodeclID; // 1< Codec type, refer to the definition of
ZWP2ZP CODECID
ZWP2P UINT32 uiSec; //I< Absolute timestamp in seconds (since 1970)
ZWP2P UINT32 uiMSec:; /1< Absolute timestamp in milliseconds (for display or
control playtime)
ZWP2P CHAR cPositionlID; / /1< Used when positioning or switching video quality
ZWP2P CHAR cReservel[3]; //I< Reserved space
ZWP2P CHAR* pBuffer; //1< Pointer to the data buffer
ZWP2P UINT32 dwBufferlen; //< Length of the data

} ZWP2P STREAMMEDIA FRAME HEADER, *LPZWP2P STREAMMEDIA FRAME HEADER;

Description

This structure is used for real-time stream media data callbacks. Each callback corresponds to one

frame of media data, including basic frame information and raw media data.

Member List

uiFrameType : Frame type

uiFrameNo : Frame number. The frame numbers for all video frames are continuous. If frames are
not continuous, frame loss should be handled by discarding frames until the next keyframe,
otherwise, it may cause visual artifacts or crashes. All audio frames have continuous frame
numbers.

uiChannel : Channel number

cStreamlD : Stream ID

cCodecID : Codec type, e.g., H264, H265, G711U
uiSec : Absolute timestamp in seconds since 1970

uiMSec : Absolute timestamp in milliseconds (Note: divide by 1000 for milliseconds). Be careful
when processing in the application layer.

cPositionID : This field is invalid for real-time stream media data.

For historical stream media data, this field is valid. Each time the position is adjusted, this value will
change. Since the device, network protocol stack, and application layer may all cache media data
during transmission, it is necessary to differentiate between pre-positioning and post-positioning
data. If the cPositionID matches the value at the time of positioning, it should be discarded.
Otherwise, it represents fresh data that should be processed.

cReserve : Reserved space

pBuffer : Media data buffer, consisting of two parts: reserved space and standard raw media data.
The reserved space is by default 28 bytes. The reserved space length can be set by the
ZWP2PVNClient SetAttribute interface. This reserved space is for scenarios where the application
layer needs to add private frame headers before the raw data to avoid unnecessary memory copies
and facilitate integration into existing software systems for playback, storage, forwarding, etc.

After the reserved space, the raw standard media data follows, which can be decoded using any
compatible decoder.

dwBufferLen : Length of the standard raw media data (excluding the reserved space).

